
CANtegrity background Part 1 

How the receiver finds bits in the CAN-frame 

This article describes how a CAN-controller synchronizes the bits contained in a CAN-frame. From this 

explanation, it should be understood that a receiver can only synchronize within one Time Quanta and 

that a CAN transmission’s precision and robustness increases with the number of TQ in the CAN-bit. It 

should also be understood that even with a perfect oscillator, a receiver can add or remove a TQ at 

every resynchronization edge. This knowledge will help you to better use the information provided by 

Kvaser’s CANtegrity tools. 

 

Processing the received signal 

The CAN-controller is a state machine that processes information at a fixed rate defined by the clock 

updating the logic state. However, the logic only takes a snapshot of the world at each clock cycle and 

has no knowledge of what happens between those snapshots. 

Figure 1 shows a CAN system in the 

process of transmitting a signal, with 

the CAN-frame travelling from the 

sender to the receiver. The CAN sender 

logic transmits the bit at the output 

TXd, indicated by 121. Signal 121 from 

sending CAN-controller 102 passes 

through CAN-driver 103 out on the 

CAN-bus on drop line 123, then along 

the CANbus to drop line 125 and to 

receiving CAN-driver 113, over signal 

line 127 to the receiving CAN-controller. 

This path results in a signal delay 

between 121 to 127. 

The receiver logic 112 continuously 

samples the physical layer signal that is 

converted to a standard digital signal 

127 by the physical layer transceiver 

circuit 113.  

The lower signal 2A in Figure 2 shows 

the communication logic signal 121 at 

the send point. The upper signal 2K 

represents the signal, 127, to the receiver communication logic. The signal from the sender must pass 

through the physical layer driver, the cable to the physical layer receiver and from there to the 

communication logic at the receiver. This delays the signal, which is indicated by arrow 2B.  

 



The drifting locations of TQ samples 

The receiver logic samples the digital signal continuously and an edge is detected by sampling a level 

different from the previous sample. Sampling by the receiver is indicated in figure 2 with arrows 2L, 2C, 

2D, 2E, 2F, 2G and 2H around the first received bit. Sampling is performed continuously after each Time 

Quanta, TQ. Signal 2K is high at sample 2C, and the previous sample 2L was also high, so no edge is 

detected.  

At sample 2D, the 

 

 

signal sampled is low, differing from sample 2C. It can therefore be assumed that there is an edge 

somewhere between sample 2C and 2D. The TQ between sample 2C and 2D where the edge is detected 

is called the sync segment in the CAN standard. In this case, the bit has 4 TQ and the bit value is that 

given by sample 2F between TQ3 and TQ4. The TQ that is a sync segment is indicated with a check 

pattern and the sample point for the bit value is indicated by an up-arrow. The sample at 2G is low and 

the next sample 2H high, which the logic detects as an edge. This edge is in the expected sync segment 

in the following bit, so everything is in perfect sync. In CAN, where low to high edges are less precise 

than high to low edges, those edges are ignored even if they occur outside the sync segment. In other 

protocols where the low and high bits are symmetric, both edges can be used to adjust the location of 

the sync segment. The next edge will be detected by the low sample at 2M compared to the high sample 

at 2J. References 2N to 2R are in figure 2 for comparison with the same references in figure 3 and 4 

under different signal conditions. 

The transmitter and the receiver samples are not synchronized, so the location of TQ samples at the 

sender will drift over time relative to the TQ at the receiver. Figure 3 show the case where the sender TQ 

samples are delayed by almost half a TQ. With the same delay 3B==2B will cause the signal edge to 

move from the center of the receiver sync segment to a location close to, but before, sample 3D. 

In figure 3, it is assumed that the sample at 3D is low, even if the edge is very close to the sampling 

point. The logic has no means of knowing the exact location of the edge in the sync segment. The only 

certainty is that the edge must be somewhere between 3C and 3D and the uncertainty is as large as the 

TQ is long. In figure 3, there is a new edge close to 3M and in this case the sample at 3M is low 

compared to sample 3J’s high. This condition is identical to that at 3D, so the sync segment is placed at 

the same location between 3J and 3M. The following high to low edge occurs close to 3Q. It is assumed 

that this edge is delayed and, in that case, that the 3Q sample is high, which has the same value as 

sample 3P. To the logic, this indicates that there is no edge between 3P and 3Q and in that the TQ 

between 3P and 3Q is not a sync segment. The next sample, 3R, is sampled low, differing from the 



previous sample, 3Q, which is high. This condition indicates that there is an edge between 3Q and 3R 

and this condition places the sync segment between 3Q and 3R. 

All about timing 

There are two reasons that the edge is delayed relative to the TQ sample in this example. If the sender 

has a clock that is somewhat slower than the receiver, the edge will be received later in the following 

bit, and sooner or later the edge will pass by a receiver TQ sample. The other reason is that the signal is 

not 100% perfect due to imperfections in the 

CAN-drivers and electro-magnetic disturbance from the surrounding environment. This causes phase 

jitter in the edge location and if the edge is close to the TQ sample, phase jitter will cause the edge to 

randomly occur before or after the TQ sample. Random phase jitter will cause the logic to move the sync 

segment back and forth depending on which side of the TQ sample the edge is located in every following 

bit.  

Figure 4 shows the other extreme location of the edge, close to but after the sample at 4C. The sync 

segment TQ remains between sample 4C and 4D, but the signal edge is now located just after 4C, which 

compares with figure 3 where the signal edge was located close to 4D. In figure 4, a new edge appears 

close to 4J and in this case, the sample at 4M is low compared to high at sample 4J. This condition is 

identical to that at 4D, so the sync segment is placed at the same location between 4J and 4M. The 

following high to low edge occurs close to 4P. In this case it is assumed that this edge comes early and 

therefore, sample 4P is low, which is different to the previous sample at 4O. To the logic, this indicates 

that there is an edge between 4O and 4P and that the TQ between 4O and 4P is a sync segment. It may 

look odd to have the sync segment located at the bit sample point at 4O but as seen in the following bit, 

the sample point 4R is now located exactly in the center of the bit. Phase jitter may also cause the sync 

segment to be placed before or after the received bit edge; less problematic as the bit edge will always 

be at least one TQ away from the bit sample point. 

 



The receiver has no means of knowing precise edge location, in time, as the TQ sample rate and the 

edge could be anywhere in the sync segment between 4C and 4D. The obvious solution to increase 

precision is to increase the sample rate and therefore get more TQ in each bit, thus decreasing the 

uncertainty of the edge location relative to the length of the bit. In this example with 4 TQ in the bit, the 

uncertainty is 25% of the bit length. In a UART communication, where 16 TQ are typically used in each 

bit, the edge is within 6.25% of the bitlength.  

 

BACKGROUND 

What is CANtegrity? 

CANtegrity is an abbreviation of ‘Signal Integrity for CAN’. In this context, signal integrity refers to how 

to secure signal quality and by secure, we mean ‘will the receiver receive the same data that as the 

sender sent?’ CANtegrity is a combination of hardware and software that helps you to understand the 

weak spots in your CAN communication. It should be noted that CAN is very robust and, in many cases, 

problems in the CAN communication originate in the software sending or receiving the CAN-frames. 

CANtegrity has two goals; to measure the robustness of a CAN physical layer and secondary, to provide 

clues on how to improve the CAN physical layer and solve problems that become apparent. As it is 

today, it is more like an advanced oscilloscope that provides detailed information to the user, from 

which the user can identify the cause of the problem. 

 

Delays in a CAN system 

The delay between CAN-controller 102 and CAN-driver 103 is only a few nanoseconds, but the 

transmitting delay through the CAN-driver is from 30 to 300 nanoseconds and this delay changes over 

temperature, supply voltage and by ageing. The delay over the dropline 123, CANbus 124 and drop-line 

125 is typically 5 nanoseconds per meter. Also, the receiving delay in CAN-driver 113 is in a range from 

30 to 300 nanoseconds and this delay also changes due to temperature, supply voltage and ageing. The 

delay between the CAN-driver 113 and the CAN-controller 112 over 127 is also 5 nanoseconds per meter 

but this distance is typically only a fraction of a meter. If there is galvanic isolation between CAN-driver 

113 and CAN-controller 112, this delay must also be considered. This consideration for 127 is also valid 

for all TXd and RXd signals between CAN-controller and CAN-driver. 

 

Signal locations in figure 1 displayed in figure 2,3 and 4 

To illustrate what’s actually going on at the receiving CAN controller, 2K in figure 2 shows the bit 
representation of receiver 127 in figure 1. In this example, there are four Time Quanta, TQ, in each bit. 
The lower part, 2A, shows the bit representation in sender 121, which in this case has an identical 
oscillator to the receiver, identifiable by its identical bit-length to the receiver. The sender sets the bit 
value at the start of the sync segment, indicated by a checker pattern, and this sync segment is one TQ 
long. In this example, the signal is represented with a square pattern. The square signal results in a level 
shift at the start of every sync segment, indicated by signal A. The signal produced by the sender logic is 
delayed throughout the signal path from the sender to the receiver, and this delay is indicated by arrow 



B. This signal delay depends on the signal path and this path differs for all receivers. In a multidrop data 
communication such as CAN and protocols using RS-485, the signal path indicated by B differs from 
receiver to receiver. Other physical layers that use multidrop – some physical layers for Ethernet, for 
example – also experience different signal delays at different receivers. 

The sender logic sends a stream of edges at some standard logic level 121. This signal is normally 

converted into a physical level signal that is better suited to the cable and the electrical environment 

around the cable. The specification for the physical layer drivers, 103, is described in different standards 

like ISO 11898-2, RS-485, 802.3da, RS-232 and other physical layers for different types of data 

communication. A matching driver, 113, is used to convert the physical line signal back to a standard 

logic level, 127, that can be processed by the receiving communication logic 112. Both the sender and 

the receiver physical interface are normally described in the same standard and are in most cases 

combined in one package, a transceiver. 

 

 

 

 


